menu
arrow_back

Running Distributed TensorFlow on Compute Engine

Running Distributed TensorFlow on Compute Engine

1시간 15분 크레딧 7개

GSP137

Google Cloud Self-Paced Labs

Overview

This lab shows you how to use a distributed configuration of TensorFlow 1.x on multiple Compute Engine instances to train a convolutional neural network model using the MNIST dataset. The MNIST dataset enables handwritten digit recognition, and is widely used in machine learning as a training set for image recognition.

TensorFlow is Google's open source library for machine learning, developed by researchers and engineers in Google's Machine Intelligence organization, which is part of Research at Google. TensorFlow is designed to run on multiple computers to distribute training workloads. For this lab you will run TensorFlow 1.x on multiple Compute Engine virtual machine instances to train the model. You can use Cloud Machine Learning Engine instead, which manages resource allocation tasks for you and can host your trained models. We recommend that you use Cloud ML Engine unless you have a specific reason not to. You can learn more in the this lab that uses Cloud ML Engine and Cloud Datalab.

The following diagram describes the architecture for running a distributed configuration of TensorFlow 1.x on Compute Engine, and using Cloud ML Engine with Cloud Datalab to execute predictions with your trained model.

7a01aa84c0a48a7b.png

This Qwiklab shows you how to set up and use this architecture, and explains some of the concepts along the way.

Objectives

  • Set up Compute Engine to create a cluster of virtual machines (VMs) to run TensorFlow 1.x.

  • Learn how to run the distributed TensorFlow 1.x sample code on your Compute Engine cluster to train a model.

  • Deploy the trained model to Cloud ML Engine to create a custom API for predictions and then execute predictions using a Cloud Datalab notebook.

이 실습의 나머지 부분과 기타 사항에 대해 알아보려면 Qwiklabs에 가입하세요.

  • Google Cloud Console에 대한 임시 액세스 권한을 얻습니다.
  • 초급부터 고급 수준까지 200여 개의 실습이 준비되어 있습니다.
  • 자신의 학습 속도에 맞춰 학습할 수 있도록 적은 분량으로 나누어져 있습니다.
이 실습을 시작하려면 가입하세요