menu
arrow_back

Implement a Helpdesk Chatbot with Dialogflow & BigQuery ML

Implement a Helpdesk Chatbot with Dialogflow & BigQuery ML

1 jam 5 Kredit

GSP431

Google Cloud Self-Paced Labs

Overview

Wouldn’t it be awesome to have an accurate estimate of how long it will take for tech support to resolve your issue? In this lab you will train a simple machine learning model for predicting helpdesk response time using BigQuery Machine Learning. You will then build a simple chatbot using Dialogflow, and learn how to integrate your trained BigQuery ML model with your helpdesk chatbot. The final solution will provide an estimate of response time to users at the moment a request is generated.

The exercises are ordered to reflect a common cloud developer experience:

  1. Train a Model using BigQuery Machine Learning

  2. Deploy a simple Dialogflow application

  3. Use an inline code editor within Dialogflow for deploying a Node.js fulfillment script that integrates BigQuery

  4. Test your chatbot

What you'll learn

  • How to train a machine learning model using BigQuery ML

  • How to evaluate and improve a machine learning model using BigQuery ML

  • How to import intents & entities into a Dialogflow agent

  • How to implement custom Node.js fulfillment scripts

  • How to integrate BigQuery with Dialogflow

Prerequisites

  • Basic concepts and constructs of Dialogflow. Click here for an introductory Dialogflow tutorial that covers basic conversational design and fulfillment using a webhook.

  • Basic SQL and Node.js (or any coding language) knowledge.

Solution Feedback/Lab Help

Bergabunglah dengan Qwiklabs untuk membaca tentang lab ini selengkapnya... beserta informasi lainnya!

  • Dapatkan akses sementara ke Google Cloud Console.
  • Lebih dari 200 lab mulai dari tingkat pemula hingga lanjutan.
  • Berdurasi singkat, jadi Anda dapat belajar dengan santai.
Bergabung untuk Memulai Lab Ini
Skor

—/100

Create a BigQuery dataset

Jalankan Langkah

/ 10

Create a new table in BigQuery dataset

Jalankan Langkah

/ 10

Build an ML model to predicts time taken to resolve an issue

Jalankan Langkah

/ 20

Run the query to evaluate the ML model

Jalankan Langkah

/ 20

Create a Dialogflow Agent

Jalankan Langkah

/ 10

Import an IT Helpdesk Agent

Jalankan Langkah

/ 20

Create a Fulfillment that Integrates with BigQuery

Jalankan Langkah

/ 10