menu
arrow_back

Exploring NCAA Data with BigQuery

Exploring NCAA Data with BigQuery

45 minutos 5 créditos

GSP160

Google Cloud Self-Paced Labs

Overview

BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without managing infrastructure or needing a database administrator. BigQuery uses SQL and takes advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.

We have a newly available dataset for NCAA Basketball games, teams, and players. The game data covers play-by-play and box scores back to 2009, as well as final scores back to 1996. Additional data about wins and losses goes back to the 1894-5 season in some teams' cases.

In this lab we will find and query the NCAA dataset using BigQuery.

What you'll learn

  • Using BigQuery

  • Query the NCAA Public Dataset

  • Writing and executing queries

What you'll need

  • A Google Cloud Platform Project

  • A Browser, such Chrome or Firefox

Únase a Qwiklabs para leer este lab completo… y mucho más.

  • Obtenga acceso temporal a Google Cloud Console.
  • Más de 200 labs para principiantes y niveles avanzados.
  • El contenido se presenta de a poco para que pueda aprender a su propio ritmo.
Únase para comenzar este lab
Puntuación

—/100

Writing queries

Ejecutar paso

/ 20

Query 1

Ejecutar paso

/ 20

Query 2

Ejecutar paso

/ 20

Query 3

Ejecutar paso

/ 20

Query 4

Ejecutar paso

/ 20